VAJIRAM \& RAVI Institute for IAS Examination

UPSC CSE Prelims 2023

Paper II - CSAT

for Prelims 2023
The most detailed \& authentic explanations to CSE Prelims 2023 - CSAT - II (Set A)

UPDATED

Answer Key
 \&
 Detailed Explanations

PowerUp Prelims Test Series for Prelims 2024

30 GS Tests（15 Sectional， 5 Comprehensive， 10 Full Length）［ $\sqrt{ }$ Detailed Model Answers \＆Explanation Videos
〔 ${ }^{2}$ Questions Based On UPSC Trend

〔〕 Equal Emphasis On Static \＆Current Events
v）All India Ranking with AI－based Performance Analysis

Prelims Assist－A Mentor Guided Prelims Test Series Programme

30 GS Tests：
（15 Sectional，
5 Comprehensive \＆ 10 Full－Length）

Premier Mentor Sessions： Learn straight from UPSC Rank Holders through exclusive monthly sessions

Flexibility \＆Convenience： Provision of opting Offline or Online Mentoring Sessions with Mentors
Targeted Feedback and Doubt Clearing：Detailed Performance analysis \＆ tailored feedback following

\square

One to One Mentor
Support：Get personalised guidance from subject Specific Mentors each test

Avail access to exclusive content on the Student Portal （vajiramias．com）

CSAT UPSC Prelims 2023 - Answer Key							
SET - A							
1. (a)	11. (c)	21. (b)	31. (d)	41. (a)	51.(d)	61. (d)	71. (b)
2. (d)	12. (c)	22. (b)	32. (c)	42. (a)	52. (a)	62. (a)	72. (a)
3. (c)	13. (b)	23. (b)	33. (d)	43. (a)	53. (c)	63. (b)	73. (d)
4. (d)	14. (a)	24. (a)	34. (c)	44. (c)	54. (b)	64. (c)	74. (d)
5. (b)	15. (d)	25. (c)	35. (a)	45. (c)	55. (a)	65. (d)	75. (d)
6. (b)	16. (d)	26. (b)	36. (c)	46. (c)	56. (d)	66. (c)	76. (a)
7. (a)	17. (d)	27. (a)	37. (d)	47. (a)	57. (c)	67. (a)	77. (d)
8. (a)	18. (a)	28. (c)	38. (d)	48. (c)	58. (a)	68. (a)	78. (a)
9. (d)	19. (c)	29. (b)	39. (c)	49. (b)	59. (d)	69. (a)	79. (a)
10. (c)	20. (a)	30. (c)	40. (d)	50. (b)	60. (b)	70. (b)	80. (c)

Q1.
Answer: a

Q2.
Answer: d

Q3.
Answer: c

Q4.
Answer: d

Explanation:

Worst case analysis:
In this case Raj would be completing a red pair in the end. So, let's say Raj drowns 18 white and 16 black shoes first and then 9 red shoes (all of left foot).
In this way Raj has drawn 44 shoes and a red pair is still not complete. The net shoe drawn will complete a red pair.
Hence option d.

Q5.
Answer: b
Explanation:

	$\mathbf{6 s}$	$\mathbf{4 s}$	$\mathbf{1 s}$
1	4	0	1
2	3	1	1
3	3	0	4
4	2	3	1
5	2	2	5
6	2	1	9
7	2	0	13
8	1	4	3

9	1	3	7
10	1	2	11
11	1	1	15
12	1	0	19
13	0	6	1
14	0	5	5
15	0	4	9
16	0	3	13
17	0	2	17
18	0	1	21
19	0	0	25

Therefore, 19 ways.
Hence, option b.

Q6.
Answer: b

Explanation:

1) Not possible. If 3 go in their respective envelopes, then fourth has to go in the correct envelope.
2) The number of ways of selecting (choosing) 2 letters out of $4={ }^{4} \mathrm{C}_{2}=6$ ways. These two letters will go in their correct envelopes. The remaining two can go in wrong envelopes only in one way (in each case).
Therefore, total 6 ways.
Hence, option b.

Q7.
Answer: a
Explanation:
$100=2^{2} \times 5^{2}$
In the given number, there one are two multiplies of $5(85$ and 95$)$ and one multiple of 4 (96) which will make the product ending with double zeroes. Hence the remains will be zero.
Hence, option a.

Q8.
Answer: a
Explanation:
The given expression is $(57242)^{945} 945$ is of the form $4 n+1$, therefore the units digit will be same as 2^{\prime}, which is 2 .
Hence, option a.

Q9.
Answer: d
Explanation:
Consider the presentation

	A	B	C
+	D	E	F
1	1	1	1

Since, none of the six digits is zero, $C+F$ must be equal to 11 .
Now B + E must be equal to 10 \{because 1 as casey-over from $C+F$ will be added to make it 11\}
Similarly A + D = 10
Therefore $\mathrm{A}+\mathrm{D}+\mathrm{B}+\mathrm{E}+\mathrm{C}+\mathrm{F}=10+10+11=31$
Hence, option d.

Q10.
Answer: c

Explanation:

As per the given situation, the value of D would be 199. So $\frac{199}{19}=10 \frac{9}{19}$ (least possible)
Therefore the difference between hundred's and units place $=8$
Hence, option c.

Q11.
Answer: c

Q12.
Answer: \mathbf{c}

Q13.
Answer: b

Q14.
Answer: a

Q15.
Answer: d

Q16.
Answer: d
Explanation:
$\mathrm{D}(100 \mathrm{~A}+10 \mathrm{~B}+\mathrm{C})=3000+700+10 \mathrm{D}+\mathrm{D}=3700+11 \mathrm{D}$

A E Approach for
 Competitive Exams

College Foundation Programme

140 G.S Class Lectures

40 Current Affairs Lectures

Printed study material
\& Monthly Current Affairs
Magazine

Weekly Answer Writing
Programme \& MCQv
Tests

Access to Revision Classes
35 Lectures on Basic
Numeracy, Logical
Reasoning, Comprehension etc.

AVAILABLE IN CLASSROOM \& LIVE-ONLINE MODE

(i) If $\mathrm{D}=4$, the number $[3700+11 \mathrm{D}]$ is divided by $\mathrm{D}(=4)$

In this case, A, B and C are 9,3 and 6 respectively.
(ii) If $\mathrm{D}=5$, the number $[3700+11 \mathrm{D}]$ is divided by $\mathrm{D}(=5)$

In this case, A, B and C are 7,5 and 1.
Hence there's no unique value for ($\mathrm{A}+\mathrm{B}+\mathrm{C}$)
Hence, option d.

Q17.
Answer: d
Explanation:
Any number of the form 'XYZXYZ' is a multiple of 1001 (in a way that 1001 ' XYZ ' = XYZXYZ)
So, irrespective of the values of X, Y and Z, the number XYZXZY is definitely divided by 1001.
$1001=7 \times 11 \times 13$.

Hence option d.

Q18.

Answer: a

Explanation:
The cubes in the question one found when all the surface cubes are removed (Let's call them core) If the total number of smaller cubelets in n^{3}, then the number of core cubes is $(n-2)^{3}$.
Here $n=5$, so $(n-2)^{3}=27$.
Hence, option a.

Q19.

Answer: c

Q20.
Answer: a
Let's say the total amount of work $=48$ units.
Hence A would do 6 units a day, B would do 3 units a day and c would do 4 units a day. Consider the following presentation:
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu

A	B	C	A	B	C	A	B	C	A	B
6	3	4	6	3	4	6	3	4	6	3

48 units done in 11 days.
Hence, option a.

Q21.
Answer: b

Q22.
Answer: b

Q23.
Answer: b

Q24.
Answer: a
Explanation:
(i) $7 \oplus 9 \oplus 10=8$

Code : $7+9+10=26$ and $2+6=8$
(ii) $9 \oplus 11 \oplus 30=50$

Code : $9+11+30=55$ and $5+0=5$
(iii) $11 \oplus 17 \oplus 21=13$

Code : $11+17+21=49$ and $4+9=13$
Therefore $23 \oplus 4 \oplus 15$ will be coded as follows :
$23+4+15=42$ and $4+2=6$.
Hence, option a.

Q25.

Answer: c

Explanation:

For $7 \mathrm{x}+96$ to be divisible by $\mathrm{x}, 96$ should be divisible by x .
$96=2^{5} \times 3$, so it has 12 factors $\{(5+1) \times(1+1)\}$
Therefore there are 12 possible values of x .
Hence, option c.

Q26.
Answer: b
Explanation:
Take the greatest possible four digits i.e 9, 8, 7 and 6 for $\mathrm{p}, \mathrm{q}, \mathrm{r}$ and s . (not in the same order)
$\mathrm{p}+\mathrm{q}+\mathrm{r}+\mathrm{s}=30$ and $(\mathrm{p}+\mathrm{q})(\mathrm{r}+\mathrm{s})$ is to be maximized the highest product of two numbers, whose sum is given, is obtained when both are equal.
Hence, $15 \times 15=225$ is the greatest possible product.
$\{$ Like $(9+6)(8+7)\}$
Hence, option b.

Q27.
Answer: a

Explanation:

1001 is a multiple of 13 .
When a 3 -digit number is multiplied with 1001, a six digit. Pattern, of the type 'abcabc' is fomed.
So, if 999 is multiplied with 1001, it will make 999999, which is a multiple of 13.
If 99999999 \qquad (99 times) is written, then every group of 6 nines will not give any remainder when divided by 13, as follows :

Its only last three 9's which one responsible for any remainder.
So, $\frac{1 3 \longdiv { 9 9 9 } 7 6}{\frac{-988}{11}} ; 11$ is the remainder.
Hence, option a.

Q28.
Answer: c
Explanation:
$(111111111)^{2}=12345678987654321$
Sum of its digits $=81$
Hence, option c.

VAJIRAM \& RAVI

Q29.

Answer: b
Explanation:
Consider 90 two-digit numbers. (from 10 to 99)
Sum of all the digits at units place $=(1+2+3 \ldots \ldots+9) \times 9$.

$$
=45 \times 9=405
$$

Sum of all the digits at tens place $=10(1+2+\ldots \ldots+9)=450$
Hundred's place $=1$
So, sum of all the digits $=405450+1=856$
Hence, option b.

Q30.
Answer: c

Explanation:

No three of the six highlighted points are collinear.

So, total number of triangles $={ }^{6} \mathrm{C}_{3}$

$$
=20
$$

Hence, option c.

Essay Course

Offers quality content \& handouts that adhere to UPSC standards

Refines aspirants' writing ability

Evaluates
proficiency
with thorough tests

Focuses
on various
COMMENCES ON
11 JUNE, 2023

AVAILABLE IN CLASSROOM \& LIVE-ONLINE MODE

Q31.
Answer: d

Q32.
Answer: c

Q33.
Answer: d
Q34.
Answer: c

Q35.
Answer: a

Q36.

Answer: c

Explanation:

1. Consider the (worst) case that the first 13 balls one black, next 19 one blue, next 25 one green, next 27 one yellow, next 37 one red, next 53 one white.
Till now $180-6=174$ balls have been drawn and no complete group has been down. Now any ball drawn next will complete a group definitely. Hence this statement is correct.
2. Consider the case that first 54 ball are white, next 38 are red, next 28 are yellow, next 26 are green, next 20 are blue. Till now 166 balls have been drawn, yet all colours are not present. The next ball drawn will fulfill the requirement. Hence this statement is correct.
Hence option c.

Q37.
Answer: d
Explanation:

Hence, option d.

Q38.
Answer: d
Explanation:
$\mathrm{C}=\mathrm{D}>\mathrm{F}>\mathrm{A}>\mathrm{B}>\mathrm{E}$
All five statements are needed.
Hence, option d

Q39.
Answer: c

Explanation:

Analysis of options:
(a) $\begin{array}{r}\quad \begin{array}{r}D=B \\ \downarrow \\ E\end{array} \quad \& C\end{array} \quad$ \{There's no connective established between B \& E\}

Hence, not sufficient
(b) $(C) \leftrightarrow(A)=B ; \begin{aligned} & D \\ & \downarrow \\ & \square\end{aligned}$ \{There's no connective established between B \& E\}

Hence, not sufficient
(c)
 \{Using all form statements, it's evident that E is brother-in-law of B\}

Hence, option c.

Q40.
Answer: d

Explanation:

Option (D) is the answer as it contains one composite number (91), all the other options contain only prime numbers.
Hence, option d.

Q41.
Answer: a

Q42.
Answer: a

Q43.
Answer: a

Q44.

Answer: c

Explanation:

Here principal and amount both are same over the period of same 1 year.
Since $\quad \mathrm{R}$ (\% annually) is compound half-yearly
and $\quad \mathrm{S}$ (\% annually) is compounded yearly
So, here amount is same, then
S > R
Hence, option c.

Q45.
Answer: d

Explanation:

Since 1186 is divided by the given no leaves remainder 31 .
So, $1186-31=1155 \leftarrow$ this will be exactly divisible.

5|1155

11|231
$7 \lcm{21}$
3
Hence factors of $1155 \rightarrow 5 \times 11 \times 7 \times 3$
Since, it is said that remainder is 31 , so, numbers should be greater than 31 , hence all those numbers are:
(1) $3 \times 11=33$
(2) $5 \times 7=35$
(3) $5 \times 11=55$
(4) $7 \times 11=77$
(5) $15 \times 7=105$
(6) $15 \times 11=165$
(7) $15 \times 7 \times 11=1155$
(8) $35 \times 11=385$
(9) $77 \times 3=231$

Total such number are $\rightarrow 9$.
Hence, option d.

Q46.

Answer: c
Explanation:
Information given are:
$\mathrm{p}<\mathrm{q}<\mathrm{r} \&$
$\mathrm{pp}+\mathrm{qq}+\mathrm{rr}=\mathrm{tto}$
it means we have choose all the values of $\mathrm{p}, \mathrm{q} \& \mathrm{r}$ such that we get o , at unit digit of tto $\leftarrow 3$ digit number.
Case-I : When $\mathrm{p}=1$

	\mathbf{p}	\mathbf{q}	\mathbf{r}		
(a)	1,	2,	7	\rightarrow	0
(b)	1,	3,	6	\rightarrow	o
(c)	1,	4,	5	\rightarrow	0

Case-II : When p = 2
(a) $2,3,5 \rightarrow 0$

Case-III : When $\mathrm{p}=3$
(a) $3,8,9 \rightarrow 0$

Case-IV : When $\mathrm{p}=4$

$$
\text { (a) } 4,7,9 \rightarrow 0
$$

Case-V : When p = 5
(a) $5,6,9 \rightarrow 0$

1. Possible value of $\mathrm{P}=5(1,2,3,4 \& 5) \rightarrow$ right
2. Possible value of $\mathrm{Q}=6(2,3,4,6 \& 8) \rightarrow$ right

Hence, option c.

Mains Test Series

Trains you to master 'The Art of Writing

Mentor
Support
\& Detailed
Answers'
Feedback


```
Helps you
to revise
the syllabus
comprehensively
```


Tests followed
by Explanation
Classes \& Model
Answer Papers

COMMENCES IN JUNE, 2023

VTS EXCEL: 15+ Months

VTS UPGRADE: 9+ Months

VTS FOCUSED: 3+ Months

VTS SPRINT: 3+ Months

AVAILABLE IN OFFLINE \& ONLINE MODE

VAJIRAM \& RAVI

Q47.
Answer: a

Explanation:

All 4 digit numbers which are less than 2000 are \rightarrow 1234
1243
1324
1342
1423
$\begin{array}{r}1432 \\ +\quad 7998 \\ \hline\end{array}$
$\underline{7998}$

Hence, option a.

Q48.
Answer: c

Explanation:

Since, it is a case of circular arrangement but here $\mathrm{n}-1$ will not be applicable.
So, number of selection will be in 12 ways.

Hence, option c.

Q49.

Answer: b

Explanation:

Since, it is based on calendar, so here we have to find out total number of odd days
So, divide 10^{10} by 7 , whatever, remainder we get that will be the number odd days.

$$
\frac{10^{10}}{7}=\frac{\left(10^{2}\right)^{5}}{7}=\frac{\stackrel{(100}{+5}_{7}^{7}}{7}=\frac{2^{5}}{7}=\frac{32 \stackrel{4}{+4}_{7}^{7}-3}{}
$$

Remainder is 4 . So, if today is Sunday then on 10^{10} day, it will be Thursday.
Hence, option b.

Q50.
Answer: b

Explanation:

Duration of time after which each signal changes colours are:

$$
\begin{aligned}
& 1^{\text {st }} \rightarrow 25 \mathrm{sec} \\
& 2^{\text {nd }} \rightarrow 39 \mathrm{sec} \\
& 3^{\text {rd }} \rightarrow 60 \mathrm{sec}
\end{aligned}
$$

Now, all three will become red after, take LCM of 25, 39, 60

$$
\begin{aligned}
& 5 \mid 25,39,60 \\
& 5 \mid 5,39,12 \\
& 5 \mid 1,39,12 \\
& 5 \mid 1,39,6 \\
& 5 \mid 1,39,3 \\
& 5 \mid 1,13,1 \\
& 1,1,1
\end{aligned}
$$

LCM $=5 \times 5 \times 2 \times 2 \times 3 \times 13$

$$
=3900
$$

So, all 3 will become red after 3900 sec.
Again, they will become green after 3900 sec.
So, total time from green to green

$$
\begin{aligned}
=3900+3900 & =7800 \mathrm{sec} \\
& =\frac{7800}{60} \mathrm{~min} \\
& =130 \mathrm{~min} \\
& =2 \mathrm{hr} 10 \mathrm{~min}
\end{aligned}
$$

So, they become again green at
$2 \mathrm{pm}+10$ min
i.e $\quad 4: 10 \mathrm{pm}$

Hence, option b.

Q51.
Answer: d

Q52.
Answer: a

Q53.
Answer: c

Q54.
Answer: b
Explanation:
The pattern is:
$\xrightarrow[+1]{1^{\text {st }},} \xrightarrow[+2]{2^{\text {nd }},} \xrightarrow[+3]{4^{\text {th }}}, 7_{+4}^{7^{\text {th }}}, 11^{\text {th }}, 16^{\text {th }}$,
Since the children are making a circle, the ring will come back to $1^{\text {st }}$ child if the number in the pattern is (40x + 1), like $41^{\text {st }}, 81^{\text {st }}, 121^{\text {st }}$, etc.

So, $\quad 1+(1+2+3+\ldots \ldots .)=.40 x+1$.
$\Rightarrow \quad 1+2+3+\ldots \ldots \ldots+x=40 x$
$\frac{x(x+1)}{2}=40 x$
$\mathrm{x}=15$ does the work
Hence, option b.

Q55.
Answer: a
Explanation:
z zyyxxxx wwwww \qquad A.

In the above sequence, the total number of terms

$$
=2+3+\ldots \ldots \ldots+27=13 \times 29=377
$$

The middle term is $189^{\text {th }}$ term.
Therefore $2+3+4+$ \qquad $x \leq 189$
$\mathrm{x}(\mathrm{x}+1) \leq 380$
$x=19$ fits the bill.
So, the $19^{\text {th }}$ letter (starting from Z) would be $8^{\text {th }}$ letter (27-19=8) starting from A, which is H .
Hence, option a.

Q56.
Answer: d
Explanation:
St. 1. $p \times q>0$ establishes two things

VAJIRAM \& RAVI

(i) Neither of p or q is zero
(ii) Both have the same sign.

But doesn't tell us anything about values.
St. 2. $p^{2}>q^{2}$
Consider (p, q) as $(4,3)$ and $(-4,-3)$. Both the pairs fit the bill but do not ascertain.
If $p>q$ or $q>p$.
Even the combination of both the above statement doesn't decide if $p>q$ or $q>p$.
Hence, option d.

Q57.
Answer: c
Explanation:
If $\mathrm{p}+\mathrm{q}-\mathrm{r}>\mathrm{p}-\mathrm{q}+\mathrm{r}$
then $\mathrm{q}>\mathrm{r}$; so p doesn't matter.
Therefore, neither statement 1 alone nor statement 2 alone will answer the question.
Combining both the statements:

$$
\begin{aligned}
& p \div q>0 \quad \\
& \frac{r-p>0}{r-q>0}
\end{aligned} \quad \Rightarrow \quad r>q
$$

Since $q-r<0$, the answer is confirmed no.
Hence, option c.

Q58.
Answer: a
Explanation:

Optional Enrichment Course

Mathematics

Sociology

Anthropology

Medical Science
Crash Course

COMMENCES IN OCTOBER, 2023

Value Addition
Lectures

Course based on PYQs and Current Development

Targeted Study Material
\& Handouts

Answer Writing Practice with Detailed Discussions

AVAILABLE IN CLASSROOM \& LIVE-ONLINE MODE

120 took T or C.

St. 1:

Can't say

St. 2:

Total number of people $=120+\mathrm{x}$
Milk only $=x$
$\Rightarrow 120+\mathrm{x}=5 \mathrm{x}$
$\Rightarrow \mathrm{x}=30$; sufficient
Hence, option a.

Q59.
Answer: d
Explanation:
St. 1: The digits are 1, 2, 3; but there would be 6 three-digit numbers possible with these digits.
Hence, option d.
Q60.
Answer: b

Q61.
Answer: d

Q62.
Answer: a

Q63.
Answer: b

VAJIRAM \& RAVI

Q64.
Answer: c

Q65.
Answer: d
Total marks deducted were 4.
Now, how these are going to be distributed among 4 papers are as follows.
Case $1 \rightarrow$ When all 4 marks are deducted from 1 paper.
Total ways $=4$
Case $2 \rightarrow$ When 1 marks is deducted from each 4 paper.
Total ways $=1$
Case $3 \rightarrow$ When 3 marks is deducted from 1 paper $\& 1$ marks is deducted from 1 paper.
Total ways $=12$
\{Since $4 p_{1} \times 3 p_{1=} 12$)

Case $4 \rightarrow$ When 2 marks are deducted from any 2 papers.
Total ways $=6$
Case $5 \rightarrow$ When 2 marks are deducted from 1 paper \& 1 marks are deducted from 2 papers.

VAJIRAM \& RAVI

Total ways = 12
So, overall ways $=12+6+12+1+4=35$ ways.
Hence, option d.

Q66.
Answer: c
Explanation:
Four horizontal strips

\square	\leftarrow we can fill it in 3 ways
	\leftarrow again this can filled in 2 ways
\leftarrow again in 2 ways	
\leftarrow	\leftarrow again in 2 ways

So, depending upon question total number of ways in which we can fill the strips are

$$
\rightarrow \quad 3 \times 2 \times 2 \times 2=24 \text { ways }
$$

Hence, option c.

Q67.
Answer: a
Explanation:

Sol.

So, maximum 6 files.

Hence, option a.

Q68.
Answer: a
Explanation:
Understanding from the question, there are two tasks - 1 and 2 and five persons - P, Q, R, S and T. As per the given constraints, the number of ways of assigning tasks to P and Q is just 1 (because P as well as Q can be given only Task -2)
No. of ways of assigning task to T is 2 (T can be given any of the two tasks)
No. of ways of assigning tasks to R and S is 3 ($R-1, S-2$; R-2, $S-1$; R-2, S-2)
So, total number of ways of assigning tasks to five persons is $1 \mathrm{x} 2 \mathrm{x} 3=6$
Hence, option a.

Q69.
Answer: a
Explanation:
According to question

1. Maximum number of coins required to buy
```
78 gm = 7
\downarrow
50 gm -> 1 coin
```

$$
\begin{aligned}
& 10 \mathrm{gm} \rightarrow 2 \text { coins } \\
& 24 \mathrm{gm} \rightarrow 4 \text { coins }
\end{aligned}
$$

$$
\text { Statement } 1 \text { is correct. }
$$

2. To measure 78 gm , minimum we have to use 7 coins.

So, it is wrong.

Hence, option a.

Q70.
Answer: b

Explanation:

According to information given in question.
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{A}>\mathrm{B}$
$\mathrm{A}-\mathrm{B} \rightarrow \mathrm{A} \leq \mathrm{B}$
$\mathrm{A} \times \mathrm{B} \rightarrow \mathrm{A} \geq \mathrm{B}$
$\mathrm{A} \div \mathrm{B} \rightarrow \mathrm{A}<\mathrm{B}$
$A \pm B \rightarrow A=B$
Statement \rightarrow conclusion (we derived)
$\left.\begin{array}{l}P \times Q \longrightarrow P \geq Q \\ P-T \longrightarrow P \leq T \\ T \div R \longrightarrow T<R \\ R \pm S \longrightarrow R=S\end{array}\right\} S=R>T \geq P \geq Q$

Conclusion:

1. $\mathrm{Q} \pm \mathrm{T} \rightarrow \mathrm{Q}=\mathrm{T} \rightarrow$ wrong
2. $\mathrm{S}+\mathrm{Q} \rightarrow \mathrm{S}>\mathrm{Q} \rightarrow$ correct

Hence, option b.

Prelims Exclusive General Studies Course

220 G.S Class Lectures \&
$550+$ Hours of Teaching

Monthly Current Affairs
Magazine

Access to Revision
Classes

Regular Assessments and Objective Test Series

Complementary CSAT Classes

Printed Study Material
called Yellow Books

Online/Offline Mentor
Support Programme
\qquad
30 Prelims Test Series in
G.S and Current Affairs

AVAILABLE IN CLASSROOM \& LIVE-ONLINE MODE

Q71.
Answer: b

Q72.
Answer: a

Q73.
Answer: d

Q74.
Answer: d
Explanation:
Here we have to find remainder
i.e. $\quad \frac{2^{192}}{6}=\frac{2.2^{191}}{6}=\frac{2^{191}}{3}$
$\Rightarrow \quad \stackrel{+2)^{-1}}{\frac{(2)^{191}}{3}}=\frac{(-1)^{191}}{3}=\frac{-1}{3}^{+1}-2$
$\Rightarrow \quad \frac{2}{3} \rightarrow$ Remainder $=2 \times \frac{2}{\downarrow}=4$
Because we have solve the fraction by 2.
Hence, option d.

Q75.
Answer: d
Explanation:

Here, if we observe then in each slot two alphabet are repeated 2 are side by side.
Ex. $\quad \mathrm{D}|\mathrm{C}|$ | B B | A A
Hence, option d.

Q76.
Answer: a
Explanation:
DEF
GHI
975
Here, $\mathrm{E}=0, \mathrm{~F}=8$
D08
So, GHI
975
So, value of $I=7, H=6$
Now the value of D may be either 5 or 4
Case-I : when value of D is 4
then, $\quad x y=408$
factors of $408=2 \times 2 \times 2 \times 3 \times 17$
x and y are two digit numbers
so, pairs formed are
\{ (i) $27 \& 17, \quad$ (ii) $\quad 34 \& 12\}$
$A+B+C=1+2+3=6$
Since no digits are same
So, value of $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=3$

Case-II : when value of D is 5
then,

$$
x y=508
$$

factors of $508=2 \times 2 \times \frac{127}{\downarrow}$
Since it is 3 digit
So, this will not be the case.
Hence, option a.

Q77.

Answer: d
Explanation:
Statement

True statement $\quad \rightarrow \quad$| Conclusion |
| :--- |
| either P or Q get job |

False statement $\rightarrow \quad$ neither R nor S get job
True statement \rightarrow maximum of two among R, S \& T get the job
$1 \rightarrow$ wrong
$2 \rightarrow$ wrong
Hence, option d.

ST들P

MENTORSHIP PROGRAMME

Individual
Mentorship

Prelims-focuse
Guidance

Mains-focused Guidance

Value Addition Lectures

AVAILABLE IN OFFLINE \& ONLINE MODE

Q78.
Answer: a

Explanation:

Statement
 Conclusion

I $\quad \rightarrow \quad$ If $\mathrm{P} \rightarrow \boldsymbol{\lambda}$, then $\mathrm{Q} \& \mathrm{~S} \rightarrow$
II $\quad \rightarrow \quad$ If R\&S $\rightarrow \boldsymbol{\mathcal { V }}$, then $\mathrm{T} \rightarrow \boldsymbol{X}$
Now on the basis of above information

1. \rightarrow If T is true

Now, when S is false then P is false.
$\therefore \quad$ Either one or atleast P \& R must be false.
So, it is true.
2. \rightarrow It is wrong. As P is dependent on both $Q \& S$.

Hence, option a.

Q79.
Answer: a
Explanation:

Total volume of cuboid $=7 \times 5 \times 3=105 \mathrm{~cm}^{3}$
Total number of cube of $1 \mathrm{~cm}^{3}=105$

1. No painted face

Total number of cube of $1 \mathrm{~cm}^{3}=5 \times 3 \times 1=15$
It is true.
2. Number of cubes of $1 \mathrm{~cm}^{3}$ with two faces painted (Blue \& Green)

It will be 4
It is wrong.
Hence, option a.

Q80.
Answer: c
Explanation:

I	N	C	O	M	P	R	E	H	E	N	S	I	B	I	L	I	T	I	E	S
T	S	S	R	P	O	N	N	M	L	I	I	I	I	I	H	E	E	E	C	B

Only 2 positions are matching in both the cases.

Hence, option c.

Optional Test Series

Agriculture

Commerce
\& Accountancy

Economics

Geography

Public
Administration

Mathematics

Political Science \& IR

Sociology
Psychology

Anthropology

History

Medical Science

Trains you to master "The Art of Writing Answers"

Helps you to revise the syllabus comprehensively

Tests followed by Explanation Classes \& Model Answer Papers

